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The control of nonlinear processes and possible transitions to chaos in systems of interacting particles is a
fundamental physical problem. We propose a nonuniform solid-state plasma system, produced by the optical
injection of current in two-dimensional semiconductor structures, where this control can be achieved. Due to an
injected current, the system symmetry is initially broken. The subsequent nonequilibrium dynamics is governed
by the spatially varying long-range Coulomb forces and electron-hole collisions. As a result, inhomogeneities
in the charge and velocity distributions should develop rapidly and lead to previously unexpected experimental
consequences. We suggest that the system eventually evolves into a behavior similar to chaos.
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Plasmas are of interest in subjects as diverse as astrophys-
ics and the design of quantum solid-state nanostructure
devices.1–4 They exhibit a variety of nonlinear phenomena,
even close to equilibrium, including instabilities and chaotic
processes on different scales.5–7 The development of strong
turbulence, characterized by Porkolab and Chang5 as a “sto-
chastic collection of nonlinear eigenmodes,” is a general, and
still puzzling, feature of plasmas. The Coulomb interaction
between carriers plays the crucial role in producing such a
collection of coupled modes. Due to the very complex dy-
namics, the ability to control the coupling and evolution of
nonlinear eigenmodes is a challenging problem.

Recent progress in optical phase control allows the pro-
duction of plasmas in semiconductors with a well-controlled
charge density and, more importantly, a well-controlled cur-
rent density.8–10 The control of the initial current density is
achieved by the quantum interference of a one-photon tran-
sition �light frequency 2�, with the field phase �2�� and a
two-photon transition �light frequency �, with the field phase
��� across the fundamental band gap Eg. At nonzero ��
��2�−2�� the symmetry of the injected distribution in mo-
mentum space is broken, and a macroscopic current with a
speed U0=ve�sin ��� is injected in a direction parallel to the
sample surface. The maximum speed of the injected elec-
trons, ve, is determined by � and Eg, reaching 103 km /s for
2��−Eg about 100 meV.

Studies of nonequilibrium electron processes in
semiconductors11 show that the entire dynamics is complex
even for a uniform electron density. When current is injected,
the resulting separation of electrons and holes leads to
strongly nonuniform Coulomb forces. Here we consider situ-
ations where these forces determine, rather than just perturb,
the development of the charge and current density patterns
that can lead to possible nonlinearities and instabilities. The
system we study theoretically is a multiple quantum well
�MQW� structure, consisting of up to ten GaAs /AlxGa1−xAs
periods, each of thickness on the order of 15–30 nm, grown
along the z direction. At photon energies where carriers are
injected only in the GaAs layers, the total thickness w of the
region, that is the number of periods multiplied by the period
width, where the plasma is produced in typical MQWs can
be on the order of 0.1 �m, still considerably less than the
spot size of the exciting laser beams and the light absorption

length, the fact that allows us to treat all single quantum
wells as equivalent electrostatically coupled layers, neglect-
ing the direct motion of electrons between the wells. The
injected carrier densities are typically Gaussian in the two-
dimensional coordinate r= �x ,y� given by Ne,h�r , t=0�
=N0 exp�−r2 /2�2�, �e for electrons and h for holes�, where
� is the spot size and N0 is the maximum total injected
two-dimensional density for all quantum wells, which is pro-
portional to the total number of single quantum wells and
can be on the order of 1013 cm−2. N0 is the concentration
parameter in our analysis. As a result, the three-dimensional
density distribution can be modeled12 as uniform along the z
axis, with

Ne,h
�3D��r,z;t� =

1

w
Ne,h�r,t���z���w − z� . �1�

For this reason we treat the density and velocity distributions
in the �xy� plane only.

The in-plane electric field depends on an integral over the
charge density −eNc�r , t�, where Nc�r , t��Ne�r , t�−Nh�r , t�
and e is the fundamental charge, and is given by

E�r,t� = −
e

	
� Nc�r�,t�KC�r − r��d2r�, �2�

where the model Coulomb kernel KC�d�=d / �d2+wC
2 �3/2

takes into account the width of the system and simplifies the
calculations by avoiding the singularity at d=0. Here 	 is the
background dielectric constant. The parameter wC is on the
order of structure width, where for wC
� the results are not
sensitive to the kernel behavior at d
�. The field E�r , t� is
very sensitive to the details of the carrier dynamics since
even relatively small changes in Ne�r , t� can strongly modify
it. For example, even if Ne,h�r , t� are taken to be slightly
separated identical Gaussian profiles, Eq. �2� shows that
E�r , t� is strongly nonuniform. Nonuniformities in the field
and in the velocities and the charge patterns mutually en-
hance each other. This process is our main interest.

To study the nonlinear dynamics, we employ a hydrody-
namic model for the dynamics of injected charge currents
and densities and include the possibility that an external elec-
tric field is also present. In hydrodynamic models one avoids
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requiring the details of distribution functions by constructing
approximate closed sets of equations involving conserved
and slowly varying quantities such as charge, momentum,
and energy densities. In the effective mass approximation,
closed equations in the range of parameters we consider can
be obtained for the velocity and density.12 For simplicity, we
assume that the holes in the injected plasma are not moving,
which does not qualitatively influence our results12 due to a
small effective mass ratio of electrons and holes. The injec-
tion typically occurs on a time scale of 50–100 fs. We take
this as instantaneous and treat it as preparing our initial state.
Since the time scales of interest are much shorter than
electron-hole recombination times, the dynamics is governed
by the continuity equation for the electron density and the
Euler equation,

�Ne

�t
+ ��Neu� = 0,

�u

�t
+ �u��u +

�P

meN
= −

e�E + Ẽ�
me

−
u

�eh

Nh

N0
−

u

�e
, �3�

where Ẽ is a time-dependent external electric field. Here and
below the r and t arguments are omitted for brevity; P is the
pressure, me is the electron effective mass, the weakly
concentration-dependent �eh describes momentum-
conserving drag13 due to the Coulomb forces during
electron-hole collisions,14 and �e is the relaxation time due to
external factors, such as phonons15 and disorder. Here we
consider the effect of this drag only, assuming �e��eh for a
clean sample and electron energies too low for intense pho-
non emission.12 The electron-hole drag and the Coulomb
forces, being coordinate dependent, increase the inhomoge-
neity in the charge density.

To obtain the solution of Eqs. �2� and �3� we use a finite
basis set, following the Galerkin method, and convert Eqs.
�3� to a system of ordinary differential equations. The expan-
sion has the form

N = �
n̄

nmax

Nn̄
e�t�n̄, ui = �

n̄

nmax

un̄
i �t�n̄ + Ui�t� , �4�

where i=x ,y is the Cartesian index. To improve the conver-
gence, we include known functions of time Ui�t� in the right-
hand side of Eq. �4� for velocities. These functions can be
obtained by solving the equations of motion in the rigid-spot
approximation16 where the electron puddle moves with uni-
form velocity u= �Ux�t� ,Uy�t�� while keeping its initial
Gaussian shape. The initial distribution N0 exp�−r2 /2�2�
suggests the eigenstates of a harmonic oscillator n̄�x ,y�
=�n1

�x��n2
�y� as the basis set of the expansions with

�n�x� =
1

		 �n ! 2n
Hn�x/��e−x2/2�2

, �5�

where Hn�x /�� is the Hermite polynomial of the nth order
and the double-index n̄��n1 ,n2�. The basis functions satisfy
the conditions for norm and derivatives,

�
−�

�

�n2
�x��n1

�x�dx = ��n1,n2
,

	2��n��x� = 	n�n−1�x� − 	n + 1�n+1�x� . �6�

In this basis, the matrix elements for the components of the
Coulomb integrals Cm̄;n̄

i �Eq. �2�� are given by

Cm̄;n̄
i =

1

�2� � m̄�r�KC
�i��r − r̃�n̄�r̃�d2r̃d2r . �7�

Taking into account Eqs. �6�, the equations of motion can be
written in the operator form,

dNm̄

dt
=

1
	2�
�

n̄,k̄

Nn̄�u
k̄

x
P2L̂12P1 + u

k̄

y
P1L̂12P2�

− U��̂1
† − �̂1�Nm̄� ,

dum̄
x

dt
= −

e2

	me
�

k̄

Nk̄Cm̄;k̄

x
− �

n̄,k̄

u
k̄

x

�eh

Nn̄
h

N0
P1P2 −

U

�eh

Nm̄
h

N0

+ Im̄� eẼ

me
−

dU

dt
 , �8�

where the equation for dum̄
�y� /dt is similar to the latter. Here

we assume Ẽ parallel to the x axis and put Uy �0 and U
�Ux for the current injected along the x axis. The small
terms �u��u and �P / �meN� in the Euler equation have been
neglected; the justification of this approximation will be
given later in the text. We have put

Pi � Pni,ki,mi
= �

−�

�

�ni
�x��ki

�x��mi
�x�

dx

�
,

Im̄ = �
−�

�

�m1
�x�

dx

�
�

−�

�

�m2
�x�

dx

�
. �9�

The operator L̂12� �̂1
†+ �̂2

†− �̂1− �̂2, where the ladder opera-

tors �̂p and �̂p
† act on the corresponding index, for example,

�̂2Pi=	kiPni,ki−1,mi
. For the problem we consider here that the

initial conditions are Nn̄�0�=	�N0�n1,0�n2,0 and un̄
i �0�=0,

where Nn̄
h is nonzero only if n1=n2=0 and remains constant

in time. Some of the interesting gross quantities that can be
calculated with these equations will be analyzed below.

The electron-hole drag makes um̄ dependent on all com-
ponents of the velocity. Despite this complication, Eqs. �8�
can be solved directly in the case of vanishing long-range
Coulomb forces. The resulting charge density has the form

Nc�r,t�
Ne�r,0�

=
U0tx

�2 exp�−
t

�eh
e−r2/2�2 . �10�

The inclusion of long-range Coulomb forces leads to a much
more complex dynamics. In Eqs. �8� the Coulomb matrices
Cm̄;k̄ couple a given velocity component um̄ to all density
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components allowed by symmetry. In turn, the density evo-
lution depends on all possible products of components of
velocity and density. Therefore, a perturbation in one com-
ponent can cause a growing response in a large number of
them. The temporal behavior of the system is determined by
three independent time scales: drag-induced �eh; the plasma
period Tpl=2� /�pl, where �pl is the two-dimensional
plasma frequency for the Gaussian density distribution,16,17

�pl
2 =�3/2N0e2 / �4	me��; and the time scale of the external

Ẽ�t�. We use the parameter p��pl�eh to characterize the
relative effects of the long-range Coulomb forces and drag.

In our simulations we use GaAs me=0.067m, where m is
the free electron mass and the dielectric constant 	=12; we
take N0=1013 cm−2 and �=1 �m. These parameters result
in a plasma period Tpl close to 0.9 ps, which is considerably
larger than the injection time. The parameter wC in the Cou-
lomb kernel is taken as 0.1�. The basis set includes 32 states
for each coordinate, giving a convergence18 in the time in-
terval of interest 0� t�Tpl /2. We consider different values
of p in the experimentally achievable range.13

To trace the evolution in the inhomogeneity of the charge
density and velocity patterns, we study �c and �u, defined to
be the ratios of gross quantities,

1

�c
2�t�
� Nc

2d2r �� ��Nc�2d2r ,

1

�u
2�t�
� �ux − U�2d2r �� ��ux�2d2r , �11�

which serve as characteristic lengths. Taking into account
that the spatial inhomogeneity �internode distance� of the
function �n�x� scales at large n as n−1/2, the number of har-
monics forming the corresponding pattern scales as �2 /�c

2�t�
or �2 /�u

2�t� if the distributions are strongly nonuniform. As
one can see in Fig. 1, both patterns, especially the density,
become strongly inhomogeneous and the role and the num-
ber of the higher harmonics grow with time.19 Therefore, we
expect that the spatial scales of the variations in the density
and velocity will rapidly decrease. Eventually, a hydrody-

namic description will fail, as stochastic behavior develops.20

The underlying charge densities and velocities are shown
in Fig. 2. The profiles have a rather complex form, showing
that the distributions of both quantities are strongly inhomo-
geneous. We calculate the mean spot displacement,

x�t� = �
n̄

Nn̄
e

Nt
� xn̄�x,y�d2r , �12�

where Nt=�N0�2 is the total number of injected electrons.
The displacement x�t� has a complex time dependence after
initially evolving simply as U0t. Even at later times x�t� is
proportional to U0 if all other parameters are kept the same.
We show in Fig. 3 the mean displacement x�t� defined in Eq.
�12� for two different cases presented in Fig. 1: considerably
�p=0.25� and very weakly �p=16� damped regimes. An as-
tonishing result is the absence of the plasma oscillations even
close to the clean limit with p=16. On the time scale of half
of the expected oscillation period Tpl, the spot becomes
strongly inhomogeneous with harmonics up to n1 ,n2�20
strongly contributing to the results. Therefore, no well-
defined oscillations occur. In all cases considered, the maxi-
mum of x�t��U0 min�Tpl ,�eh� is much less than �, and
therefore the �u and �P originated terms in the Euler equa-
tion can be neglected.

As another example of this unusual behavior, we present
the results for the clean system �p=16� driven by an external

field Ẽ�t�=E0 sin�k�plt� for the same initial Gaussian density
distribution as above but with no current injection �U0=0�.
Here the inhomogeneity develops more slowly than if cur-
rent was injected since x�t� increases as t3 rather than as t at
the initial stage of the process. Nonetheless, the x�t� is con-
siderably different from the expected for a linear oscillator,
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FIG. 1. �Color online� Inhomogeneity parameters of the charge
density �main plot� and velocity �inset� pattern for two regimes of
the Coulomb forces. The parameter p��pl�eh is shown near the
plots. p=16 corresponds to the extremely weak damping, while for
p=0.25 the damping is relatively strong. Here Tpl=0.9 ps. The
functions presented in the plots are universal in the sense that they
do not depend on the initial speed of the puddle U0. FIG. 2. �Color online� Patterns �in arbitrary, same for both col-

umns, units� of charge density Nc�x ,y� �upper row� and velocity
ux�x ,y� �lower row� at t=Tpl /2. Left column: p=0.25; right column:
p=16. The density has Nc�x ,−y�=−Nc�x ,y� symmetry. In the upper
row, larger bow at x�0 corresponds to Nc�x ,y��0. The velocity
satisfies the condition ux�−x ,y�=ux�x ,y�. For ux�x ,y� maximum
values are achieved at the wings �x� /� close to 3, y=0. Minimum
values are achieved at �x� /� close to 1, y=0.
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xlo�t� =
x0

1 − k2 �sin k�plt − k sin �plt� , �13�

with x0=eE0 /me�pl
2 due to the fact that the excitation of the

higher Hermite-Gaussian modes strongly influences the re-
sponse to the external field, as shown in Fig. 3�b�. For a

system driven close to resonance �k=1.2�, the difference be-
tween the full and linear oscillator behaviors is less than for
k=4 since near resonance the uniform external force is more
important than the interactions.

To conclude, the macroscopic dynamics of optically in-
jected currents in clean semiconductor multiple quantum
wells is strongly inhomogeneous and nonlinear due to the
nonuniform long-range Coulomb forces that develop. These
forces arise following the initial breaking of the symmetry by
the injected electron puddle velocity U0, which leads to a
separation of electrons and holes that produces the nonuni-
form macroscopic Coulomb interaction. Due to the coupling
of the Hermite-Gaussian modes through conservation of
charge, the charge density becomes nonuniform on progres-
sively smaller spatial scales. In contrast to what might be
expected, it does not show well-defined plasma oscillations.
The complex charge and current density patterns develop on
a time scale on the order of a quarter of the plasma oscilla-
tion period characteristic of the given carrier density and
puddle size. The length scales characterizing the spatial in-
homogeneities in density and velocity decrease rapidly, and,
in the terminology of Porkolab and Chang,5 a turbulence
regime will likely develop. These systems will provide a
laboratory example of plasmas with controlled nonlinear be-
havior and likely a transition to a stochastic regime.
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FIG. 3. �Color online� �a� Mean spot displacements for free spot
propagation. Dashed line corresponds to the linear undamped oscil-
lations. The displacement of the spot is on the order of U0Tpl /4, that
is, 20 nm for typical U0=100 km /s and assumed here Tpl=0.9 ps.
�b� Mean spot displacements for the forced oscillations. Dashed
lines correspond to the linear oscillator in Eq. �13�. The frequency
coefficients are k=4 �off resonance� and k=1.2 �close to the
resonance�.
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